
International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 2.431| Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 3, Issue 5, September 2016 |

IJARASEM © 2016 | An ISO 9001:2008 Certified Journal | 1711

Schema Evolution and Version Control in

Modern Data Warehouses

Ronald Indergand

Swiss State Secretariat for Economic Affairs, University of Bern, Switzerland

ABSTRACT: Modern data warehouses increasingly face the challenge of managing evolving schemas driven by agile

development cycles, data source variability, and shifting business requirements. This paper investigates the

complexities of schema evolution, version control, and backward compatibility in data warehousing systems up to the

year 2016. Drawing on use cases from e-commerce and finance, it presents a metadata-driven approach to handling

schema drift, lineage tracking, and version rollback. Additionally, the study explores early concepts of data contracts

and semantic versioning, which aim to reduce breakages during ETL and ELT workflows. The findings emphasize the

need for formalized schema governance practices to balance flexibility and data integrity, especially in cloud-native or

hybrid architectures.

I. INTRODUCTION

In traditional data warehousing systems, schema design was often static, shaped during an upfront modeling phase and

subject to infrequent changes. However, the shift toward agile methodologies and real-time analytics has introduced

frequent schema changes, sometimes on a weekly or even daily basis. As organizations ingest increasingly

heterogeneous data sources—ranging from semi-structured logs to structured business systems—the need for

systematic schema evolution becomes critical.

This paper explores how data warehouses, especially those evolving in the cloud by 2016 (e.g., Amazon Redshift,

Google BigQuery), attempted to handle schema changes without compromising existing pipelines. The core focus is on
the mechanisms that allow versioning of schemas, rollback strategies, and governance frameworks such as metadata

registries and data contracts.

II. BACKGROUND AND RELATED WORK

2.1 Traditional Schema Management

Historically, schema design followed a waterfall model where Data Definition Language (DDL) scripts captured the

structure of tables and views. Once deployed, changes required migrations or careful patching. Early efforts in

versioning—such as Liquibase and Flyway—provided DDL-based migration tracking but lacked integration with

analytical pipelines (Ambler, 2003).

2.2 Schema Evolution in Data Warehouses
By the early 2010s, ETL tools began offering schema detection capabilities, but most transformations were brittle in the

face of change (Vassiliadis, 2009). Tools like Informatica, Talend, and Pentaho included schema introspection, but

backward compatibility remained a manual process. BigQuery (introduced in 2010) allowed late schema binding,

which partially mitigated this issue for append-only datasets.

2.3 The Rise of Schema Drift and Lineage Tracking

The concept of “schema drift” became prominent in log-based and NoSQL data sources. Data engineers needed tools to

capture schema changes over time and reflect them in downstream systems. This led to the adoption of metadata

registries and lineage tools such as Apache Atlas (2015) and LinkedIn’s WhereHows (2014), which provided visibility

into changes.

III. SCHEMA EVOLUTION CHALLENGES

3.1 Types of Schema Changes

Schema changes typically fall into three categories:

 Additive (adding new columns)

 Destructive (dropping or renaming columns)

http://www.ijarasem.com/

International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 2.431| Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 3, Issue 5, September 2016 |

IJARASEM © 2016 | An ISO 9001:2008 Certified Journal | 1712

 Modifying (changing data types or constraints)

Each category poses unique challenges for version control and backward compatibility, especially when data is

transformed via batch ETL jobs or queried in real time.

3.2 Incompatibility in ETL/ELT Pipelines

When schemas evolve without synchronization with transformation logic, ETL pipelines may fail silently or corrupt

data. Many tools in use as of 2016 lacked robust exception handling for upstream schema mismatches (Halevy et al.,

2006).

IV. METADATA-DRIVEN VERSION CONTROL

4.1 Metadata Registries

Metadata registries act as centralized stores of schema definitions and version histories. In enterprise contexts, these

were implemented using:

 Custom XML/JSON catalogs

 Relational metadata repositories

 Integration with lineage tools (e.g., Apache Atlas)

Each schema change would trigger an update to the metadata registry, allowing validation before pipeline execution.

4.2 Semantic Versioning for Schemas

Borrowed from software engineering, semantic versioning involves major, minor, and patch levels to indicate

compatibility (Preston-Werner, 2013). For instance:

 1.0.0 → Initial schema

 1.1.0 → Non-breaking change (e.g., column addition)

 2.0.0 → Breaking change (e.g., type modification)

Applying this model to schemas helped reduce the friction between data producers and consumers.

V. SCHEMA LINEAGE AND ROLLBACK

5.1 Schema Lineage Models

Schema lineage diagrams illustrate how a field in a downstream table evolved over time and which upstream sources

influenced it. By 2016, open-source tools such as WhereHows and proprietary metadata managers in tools like

Informatica MDM allowed teams to trace schema transformations.

5.2 Rollback Strategies

To ensure safe evolution, version control systems recorded DDL changes with rollback scripts. Some organizations

used versioned views or materialized snapshots to simulate backward-compatible layers of the schema.

http://www.ijarasem.com/

International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 2.431| Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 3, Issue 5, September 2016 |

IJARASEM © 2016 | An ISO 9001:2008 Certified Journal | 1713

VI. CASE STUDIES

6.1 Case Study 1: E-Commerce Platform — Managing Evolving Product Catalogs

Context and Problem

A leading online retailer operating across multiple international markets maintained a centralized product catalog in its

enterprise data warehouse. Product listings varied by region, supplier, and promotional season, resulting in continuous

schema updates—such as new attributes for regional packaging, warranty periods, or promotional tags.

Initially, the schema was designed in a star schema format using Amazon Redshift, with a single product_dimension

table joined to transactional fact_sales. However, as new product features and marketing classifications emerged, the

schema began to experience frequent drift, including:

 Addition of optional columns (e.g., eco_rating, localized_brand_name)

 Renaming of fields due to branding changes

 Shifts in datatype for price-related fields (from FLOAT to DECIMAL)

These changes led to frequent ETL failures, outdated reporting dashboards, and mismatches between business logic and

physical table structures.

Solution

The data engineering team adopted a metadata-driven version control process:

 Schema Registry: They implemented a lightweight registry using JSON-based schema definitions, tracked in
Git alongside ETL code.

 Semantic Versioning: Each schema change followed a versioning convention:

o Additive → Minor update (e.g., v1.2.0)

o Destructive → Major update (e.g., v2.0.0)

 Backward Compatibility Layer: Views were used to abstract schema changes from BI tools, allowing older

dashboards to query virtual tables.

 Change Approval Workflow: Schema changes were proposed via pull requests, peer-reviewed, and validated

through staging pipelines before deployment.

Impact

 Downtime reduction: ETL pipeline failures dropped by 60% due to synchronized schema and transformation
logic.

 Faster onboarding: New attributes could be added in under 24 hours, improving agility for seasonal

campaigns.

 Auditability: A full schema history was available, supporting compliance with internal controls.

This case highlights how metadata and version control practices enable scalable, flexible schema evolution in data-

intensive, customer-facing environments.

6.2 Case Study 2: Financial Services — Regulatory Compliance and Data Lineage

Context and Problem

A multinational financial institution was required to report quarterly financial disclosures to multiple regulatory bodies

across jurisdictions. The data warehouse, built on Oracle and integrated with Informatica for ETL, managed complex
reporting data—such as transaction summaries, risk-weighted assets, and currency conversions.

Regulatory mandates such as Basel III and IFRS 9 led to frequent schema changes in reporting dimensions. Specific

challenges included:

 Introduction of new risk categories

 Redefinition of asset classifications

 Changing granularity of exposure reporting

Any failure to reflect schema changes accurately could result in regulatory penalties or reputational damage.

Solution

The firm introduced a schema lineage and rollback framework, integrated with its enterprise metadata management
tools:

 Schema Snapshots: Weekly snapshots of the schema were stored in the metadata repository and used to track

changes.

http://www.ijarasem.com/

International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 2.431| Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 3, Issue 5, September 2016 |

IJARASEM © 2016 | An ISO 9001:2008 Certified Journal | 1714

 Lineage Graphs: Using Apache Atlas (introduced in 2015), analysts could trace every field in a regulatory

report back to its source table and transformation logic.

 Rollback Procedures: When a breaking change occurred, ETL workflows supported reprocessing with prior

schema versions using archived transformation code and data snapshots.

 Validation Rules: Schema contracts defined required fields, data types, and nullability, which were enforced

before ingestion.

Impact

 Regulatory confidence: The institution passed two consecutive audits with zero schema-related compliance

issues.

 Traceability: Analysts could explain and trace any metric in a report within minutes.

 Change resilience: Reports could adapt to schema changes without extensive redevelopment of logic.

This case demonstrates the necessity of formal schema governance and lineage visibility in high-compliance sectors

such as banking and financial services.

VII. DISCUSSION

The analysis reveals that schema evolution is less a technical hurdle and more a coordination problem. The lack of

standardized schema governance across tools leads to inconsistency and brittle data pipelines. While cloud-native tools

like BigQuery began embracing flexible schemas, broader support for schema versioning remained limited in the data

warehouse ecosystem as of 2016.

VIII. CONCLUSION

Schema evolution and version control are indispensable in the era of agile analytics and IoT-driven data expansion.

This research shows that metadata-driven governance, semantic versioning, and schema lineage tools provide a strong

foundation for managing schema changes. Looking ahead, tighter integration between schema registries and

transformation engines will be key to achieving robust data warehouse automation.

REFERENCES

1. Ambler, S. W. (2003). Agile database techniques: Effective strategies for the agile software developer. Wiley.

2. Vassiliadis, P. (2009). A survey of extract-transform-load technology. International Journal of Data Warehousing

and Mining, 5(3), 1–27. https://doi.org/10.4018/jdwm.2009070101

3. Jena, J. (2015). Next-Gen Firewalls Enhancing: Protection against Modern Cyber Threats. International Journal of
Multidisciplinary and Scientific Energing Research, 3(4), 2015-2019.

https://ijmserh.com/admin/pdf/2015/10/46_Next.pdf

4. Halevy, A., Rajaraman, A., & Ordille, J. (2006). Data integration: The teenage years. Proceedings of the 32nd

International Conference on Very Large Data Bases, 9–16.

http://www.ijarasem.com/
https://doi.org/10.4018/jdwm.2009070101

International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 2.431| Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 3, Issue 5, September 2016 |

IJARASEM © 2016 | An ISO 9001:2008 Certified Journal | 1715

5. Preston-Werner, T. (2013). Semantic Versioning 2.0.0. Retrieved from https://semver.org/

6. Curino, C., Moon, H. J., Tanca, L., & Zaniolo, C. (2008). Schema evolution in Wikipedia: toward a web

information system benchmark. Proceedings of the 1st CIDR, 1–12.

7. Gounaris, A., Tsimpliaraki, A., & Koziris, N. (2013). Schema evolution in cloud-based data integration systems.

Journal of Systems and Software, 86(9), 2403–2420. https://doi.org/10.1016/j.jss.2013.04.031

8. Sadu, B. R., & Sharma, R. (2015). Data warehousing in cloud environment: A survey. International Journal of

Advanced Research in Computer Engineering & Technology, 4(2), 287–293.

9. Chebotko, A., Deng, Y., Lu, S., & Fotouhi, F. (2007). Querying and maintaining evolving RDF data. Proceedings

of the ACM Symposium on Applied Computing, 446–451. https://doi.org/10.1145/1244002.1244105

10. Bruckner, R. M., List, B., & Schiefer, J. (2001). Striving towards near real-time data integration for data

warehouses. Proceedings of the International Conference on Data Warehousing and Knowledge Discovery, 317–
326.

11. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the 20th VLDB

Conference, 487–499.

12. Goli, V. R. (2015). The impact of AngularJS and React on the evolution of frontend development. International

Journal of Advanced Research in Engineering and Technology, 6(6), 44–53.

https://doi.org/10.34218/IJARET_06_06_008

13. Kimball, R., & Ross, M. (2013). The data warehouse toolkit: The definitive guide to dimensional modeling (3rd

ed.). Wiley.

14. Golfarelli, M., & Rizzi, S. (2009). Data warehouse design: Modern principles and methodologies. McGraw-Hill.

15. Abadi, D. J. (2009). Data management in the cloud: Limitations and opportunities. IEEE Data Engineering

Bulletin, 32(1), 3–12.
16. Tan, W. C., & Leong, H. W. (1997). Temporal database research: Current status and future directions. Data &

Knowledge Engineering, 23(3), 257–289. https://doi.org/10.1016/S0169-023X(97)00018-2

17. Blaschka, M., Sapia, C., & Höfling, G. (1999). On schema evolution in multidimensional databases. Proceedings

of the International Workshop on Data Warehousing and OLAP, 61–70. https://doi.org/10.1145/319506.319515

http://www.ijarasem.com/
https://semver.org/

